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Abstract
Massive open online courses (MOOCs) are playing an increasingly important role 
in higher education around the world, but despite their popularity, the measurement 
of student learning in these courses is hampered by cheating and other problems 
that lead to unfair evaluation of student learning. In this paper, we describe a 
framework for maintaining test security and preventing one form of cheating in 
online assessments. We also introduce readers to item response theory, scale linking, 
and score equating to demonstrate the way these methods can produce fair and 
equitable test scores. Patrick Meyer is an Assistant Professor in the Curry School of 
Education at the University of Virginia. He is the inventor of jMetrik, an open source 
psychometric software program. Shi Zhu is a doctoral student in the Research, 
Statistics, and Evaluation program in the Curry School of Education. He holds a 

Ph.D. in History from Nanjing University in China.

Fair and Equitable Measurement of  Student 
Learning in MOOCs: An Introduction to Item 

Response Theory, Scale Linking, and Score Equating

The last couple of years have witnessed booming development of massive open online 
courses (MOOCs). These free online courses provide an innovative way of teaching and 
learning and make higher education accessible to a global audience. Anyone with an internet 
connection can take courses from top universities in the United States, Canada, Mexico, 
Europe, Asia, and Australia (Lewin, 2013). MOOCs hold the promise of distributing high 
quality courses to a global audience and making higher education accessible to people who 
could not otherwise afford it. Children from working-class families or low-SES backgrounds 
who could not attend elite universities due to economic reasons are now able to get access to 
these universities’ teaching resources without financial difficulty. Even middle class families 
can look to MOOCs as a way to offset high tuition rates (Thrift, 2013). Despite the promise of 
MOOCs, few colleges and universities offer full course credit to students completing a MOOC. 
Indeed, only five of Coursea’s courses are approved for course credit by the American Council 
on Education (Lederman, 2013), and many professors teaching MOOCs feel that students do 
not deserve course credit for completing a MOOC (Kolowich, 2013). The concern for course 
credit not only centers around course quality but also the assessment of student learning. 

	 Online assessments are becoming more important in higher education because 
students who take online courses do not have many chances to communicate with their 
instructors and demonstrate mastery of course content in a direct way (Rovai, 2000). One 
obvious advantage of online assessment over a traditional test is that it can be carried out 
flexibly in different locations and at different time periods, and can be integrated into the 
online learning environment (Reeves, 2000). These assessments may simply be online 
versions of paper-and-pencil tests given in a traditional classroom or they may be innovative 
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assessments that take full advantage of resources available in computer based testing. For 
example, personalized e-learning systems based upon item response theory (IRT) can provide 
adaptive online assessments (Baylari & Montazer, 2009; Chen, Lee, & Chen, 2004) that tailor 
testing and course content to individual student ability. These adaptive online assessments 
start with items of moderate difficulty, and then change item difficulty according to a test 
taker’s performance. Given that examinees complete different items and different numbers of 
items, the final score is not based upon the number of answers he or she got correct but the 
difficulty and discrimination levels of correctly answered questions (Challis, 2005). Once the 
score is known, course content can then be tailored to each individual student (see Baylari & 
Montazer, 2009).

	 Despite the innovative possibilities with online assessment, there are still some 
problems that cause concern among educators, policy makers, and test designers such as 
content disclosure, violations of intellectual property rights, system integrity (Challis, 2005), 
and identity security (Rovai, 2000). Perhaps the most serious threat to online assessments is 
cheating, a problem that has long existed in testing. 

	 Cizek (1999, 2003) identifies three types of cheating: (a) cheating by giving, taking, 
or receiving information from others; (b) cheating through use of prohibited materials; and (c) 
cheating by thwarting the testing process. These types of cheating are observed in traditional 
paper and pencil testing as well as online testing. Examples of cheating in an online environment 
include online communication, telecommunication, internet surfing (Rogers, 2006), copying 
and pasting from online sources (Underwood & Szabo, 2003), obtaining answer keys in an 
illegitimate way, taking the same assessment several times, and getting unauthorized help during 
the assessment (Rowe, 2008). Cheating gives dishonest examinees an unfair advantage in the 
assessment process and it leads assessment professionals to the wrong decision about examinees. 

	 Cohen and Wollack (2006) describe three types of countermeasures that can be used 
to combat cheating and level the playing field. Human countermeasures require a proctored 
testing environment and entail any observational methods a test proctor can use to detect 
cheating. Examples include looking for a student who is conspicuously nervous or who makes 
frequent trips to the restroom. Electronic countermeasures are similar and may also require a 
formal testing environment. However, electronic countermeasures make use of technology to 
prevent and detect cheating. For example, a test environment may use cameras instead of a 
human proctor to monitor examinees or it may use special equipment to scramble cell phone 
signals during a test. Electronic countermeasures for an online exam may include installation 
of security software and IP tracking (Rogers, 2006; Rowe, 2008). Finally, psychometric 
countermeasures include statistical methods for the prevention and detection of cheating. 

	 Among psychometric counter measures are procedures to limit item exposure 
(Cohen & Wollack, 2006). If thousands of examinees all complete the same test form, then 
everyone sees the same items and the risk of an examinee copying and sharing test items with 
others greatly increases. Prior knowledge of test items will undoubtedly give an advantage to 
examinees with this information and lead to a breach of standardization procedures and a lack 
of fairness (Cook & Eignor, 1991). One simple method for reducing item exposure and reducing 
the impact of cheating is the use of multiple test forms (Cizek, 1999, 2003; Cohen & Wollack, 
2006; Cook & Eignor, 1991). This practice reduces exposure and it lessens the possibility that 
an examinee will cheat because the examinee will not know if the items for which he or she 
has prior knowledge will actually be on the test he or she is given. Item exposure decreases as 
the number of test forms increases. In an extreme case, randomly selecting items from a large 
item pool could result in every examinee completing a unique test form (see Lederman, 2013; 
Rowe, 2013). 

	 Cook and Eignor (1991) noted that testing must be “fair and equitable” (p. 191). Use 
of multiple test forms improves fairness by reducing the occurrence of cheating, but it can 
result in inequities if one test form is easier than another. Students receiving the easier form 
will perform better and have a greater advantage in seeking MOOC course credit than a 
student who receives the more difficult form. To achieve Cook and Eignor’s fair and equitable 
criterion, multiple test forms must be placed on a common scale. Scale linking and score 
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equating results in comparability among scores from different test forms and a situation in 
which examinees can feel indifferent about the test form they are given. The remainder of 
this paper discusses the use of item response theory to link and equate multiple test forms. 
Our discussion focuses on two test forms but it easily extends to any number of test forms 
or even an entire item bank. As described below, the basic steps in this framework are to: 
(a) collect data in a way suitable for linking, (b) estimate item and person parameters, (c) 
link estimates to a common scale, and (d) equate test scores to adjust for test difficulty. The 
first three steps are required whenever there are multiple test forms. The third step is only 
needed if the reporting metric is based on the observed score and not the item response 
theory ability score. Our aim is to introduce readers to this framework. To this end, we have 
omitted many of the details needed to fully implement this framework.1 

Item Response Theory

	 Instructors implicitly rely on classical methods for test scaling and analysis when 
they create an exam or quiz score by summing the number of items answered correctly 
by a student. These methods are easy to implement in a classroom setting and provide for 
well-established methods of analyzing data and evaluating test quality. Tests designed with 
classical methods give instructors confidence that student scores would not change much if 
they had given them a different test built to the same content specifications.

	 Item analysis lies at the heart of evaluating the quality of tests developed through 
classical methods. Item difficulty and discrimination are two statistics in an item analysis. 
Item difficulty is the mean item score and item discrimination is the correlation between the 
item score and test score. These statistics allow instructors to identify problematic items such 
as those that are too easy or too difficult for students and items that are unrelated to the overall 
score. Instructors can then improve the measure by revising or eliminating poorly functioning 
items. An end goal of item analysis is to identify good items and maximize score reliability. 

	 Although classical methods are widely used and easy to implement, they suffer from a 
number of limitations that are less evident to instructors. One limitation is that classical test 
theory applies to test scores, not item scores. Item difficulty and discrimination in the classical 
model are ad hoc statistics that guide test development. They are not parameters in the model. 
Through rules-of-thumb established through research and practice (see Allen & Yen, 1979), 
these statistics aid item selection and help optimize reliability. However, they do not quantify 
the contribution of an individual item to our understanding of the measured trait. 

	 A second limitation to the classical approach is that item statistics and test 
characteristics are population dependent. Item difficulty will be large (i.e., easier) if a test is 
given to a group of gifted students, but it will be small (i.e., harder) if the same item is given 
to a group of academically challenged students. Population effects on item difficulty make it 
difficult to evaluate item quality because the statistic also reflects examinee quality. Score 
reliability also depends on the examinee population. It is defined as the ratio of true score 
variance to observed score variance. As such, scores from a population that is heterogeneous 
with respect to the measured trait will be more reliable than scores from a population that is 
homogenous. This result means that an instructor’s confidence in the reproducibility of test 
scores depends on the group of students taking the test (Hambleton & Swaminathan, 1985).

	 The dependence between item and person characteristics in the classical approach 
also plays out at the test score level. A test will seem easy if given to a group of gifted students 
because the average test score will be higher than it is for the general population. Even 
if multiple test forms are developed to the same specifications and have similar levels of 
reliability, they will slightly differ in difficulty because of differences in groups taking each 
form. Equating must be conducted to adjust for these differences and produce comparable 
scores. Linear and equipercentile equating (see Kolen & Brennan, 2004) are two classical 
approaches to test equating that use the observed score as the basis of equating. 

1 Readers can find detailed information about test equating in Kolen and Brennan’s (2004) Test equating, scaling and linking: 	      	
  Methods and practices.
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	 Item response theory (IRT) overcomes these limitations of the classical model. 
IRT item statistics are estimates of parameters in the model and they can tell us about the 
contribution of each item to our understanding of the latent trait. Moreover, parameters are 
invariant to changes in the population, up to a linear transformation (Rupp & Zumbo, 2006). 
This statement means that if the model fits the data, item parameters will be the same in every 
population subject to a linear transformation. It also means that person parameters (i.e., the 
latent trait) will be the same in every group of items that conform to the test specifications (Bond 
& Fox, 2007). That is, we can obtain the same person ability estimate, within measurement 
error, from any set of test items. All that we need to do is apply a linear transformation to the 
parameters from one form to place it on the scale of another. Overcoming the limitations of 
classical methods does not come without a cost. At a theoretical level, IRT requires more strict 
assumptions and, at a practical level, it requires more training and specialized software.

Binary Item Response Models

	 Item response models exist for binary scored (e.g., multiple-choice) and polytomous 
scored (e.g., constructed response, Likert scales) test questions. For brevity, we will focus 
on the common unidimensional models for binary items. The most general model is the 
three parameter logistic (3PL) model. It has one parameter for examinee ability and three 
parameters for item characteristics. The model is given by 

The Greek letter theta,    , is the examinee ability parameter. It represents a person’s latent trait 
value. The exponential function is indicated by exp in this equation, and the letters a, b, and 
c represent item parameters. 

	 Item discrimination, the a parameter, is the slope of the line tangent to the item 
characteristic curve (ICC; see Figure 1) at the point of inflection. It reflects the relationship 
between an item response and the latent trait. It is similar to a factor loading in factor analysis. 
Item discrimination is always positive. Large item discrimination values will produce an ICC 
with a steep curve and small values will produce a flat curve. Item difficulty, the b parameter, 
affects the location of the curve. Small difficulty values shift the whole curve to the left and 
large values shift it to the right. Interpretation of item difficulty in IRT is opposite that for 
the classical item difficulty statistic, but it is in a more intuitive direction. Small values of 
item difficulty are easy items, whereas large values are difficult ones. Finally, the guessing 
parameter, the c parameter, indicates the lower asymptote of the ICC. This means that an 
examinee with an extremely low ability level still has a small chance of answering the item 
correctly. It is presumed that this small chance is due to guessing on a multiple-choice test.

	 In the 3PL model, discrimination, difficulty, and guessing can be different for every 
item. Constraining these parameters leads to different IRT models. The two parameter logistic 
(2PL) and 1 parameter logistic (1PL) models are special cases of the 3PL. In the 2PL, the 
guessing parameter is fixed to zero meaning that low ability examinees have a near zero 
chance of answering the item correctly. The only parameters estimated in the 2PL are item 
discrimination and difficulty. In the 1PL model, guessing is fixed to zero and discrimination 
is fixed to be the same for every item but difficulty is freely estimated for every item. That 
is, discrimination is estimated in the 1PL but a single discrimination value is applied to all 
items. Item difficulty is also estimated in the 1PL but it is allowed to be different for every 
item. Finally, the Rasch model is a special version of the 1PL that requires the discrimination 
parameter to be fixed to a value of one for every item. Only the difficulty parameter is 
estimated in the Rasch model.

	 Table 1 lists item parameters for two test forms, Form X and Form Y. However, item 
parameters are best explained through a graph. An ICC illustrates the probability of a correct 
answer,       , for different levels of examinee ability. Figure 1 shows the ICCs for Items 21 
and 23 on Form X. As ability increases along the x-axis, the curves increase indicating that 
the probability of a correct answer increases as the value of the latent trait increases. Item 
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parameters affect the probability of a correct response and look of the ICC. Item 21 is less 
discriminating and difficult but involves more guessing than Item 23 (see Table 1). Because of 
these differences in parameters, the ICC for Item 21 is less steep, shifted to the left, and has a 
larger lower asymptote than Item 23. 

	 Item characteristics in IRT relate directly to test characteristics. A test characteristic 
curve (TCC) is the sum of all ICCs. It describes the regression of true scores on the latent trait. 
That is, the x-axis represents person ability, and the y-axis represents true scores. Figure 2 
illustrates the TCC for Form X. It looks similar to an ICC but the y-axis is different. The y-axis 
ranges from the sum of the guessing parameters (5.6 in Figure 2) to the maximum possible sum 
score (30 in Figure 2). Because of the relationship between a TCC and an ICC, we can select 
items for a test in a way that achieves a desired TCC.
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	 Another useful function in IRT is the item information function,         . In the 3PL 
model it is                                                                         .The item information function tells 
us about the contribution of a single item to our understanding of the latent trait. In 
the Rasch and 2PL model, information is largest at the place where item difficulty equals 
examinee ability. Like the ICC, the difficulty parameter affects how far left or right the 
information curve is shifted and the item discrimination parameter affects how peaked 
the curve appears. Low difficulty values place information along low levels of the ability 
scale, whereas larger difficulty values place information at high points of the scale. In a 
similar vein, large discrimination values concentrate a lot of information over small range 
of ability levels, but small discrimination values spread a small amount of information 
over a wide range of the scale. That is, items with large discrimination values tell us more 
about the latent trait at a particular point than do items with low discrimination. Finally, 
as the guessing parameter increases, the amount of information decreases.

	 Figure 3 illustrates the effect of item parameters on the item information function. 
This figure involves the same two items as Figure 1. The more discriminating item (Item 23) 
has a more peaked information function than Item 21. It is also shifted to the right because it 
has a larger difficulty value than Item 21. Notice that these two items tell us very little about 
examinee ability values less than -2. Most of the information is concentrated between -2.0 and 
2.5. To improve information at low ability levels, we should add easier items to the test (e.g., 
those with a difficulty less than -2.0). 

	

	 Information also plays a role at the test level. The test information function is the sum 
of all item information functions. The greater the information, the more we know about the 
latent trait. Consequently, we can create a test information function that targets specific ability 
levels, such as the passing score, by selecting items that provide a lot of information at that 
point. The relationship between item information functions and the test information function 
make evident the contribution of each item to our understanding of the latent trait. Indeed, 
information functions are central to many item selection routines in computerized adaptive 
testing (see Wainer et al., 2000). 

	 Test information is a concept in IRT that replaces the idea of reliability from the classical 
model in that we aim to maximize information. The reason for maximizing information is 
because information is inversely related to the standard error of estimating examinee ability,        	
                               . The ability levels with the most information are the ones that have the highest 
amount of measurement precision. 
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Parameter Estimation and Software

	 Marginal maximum likelihood estimation (MMLE) is a method used to obtain parameter 
estimates in the 2PL and 3PL models. Conditional maximum likelihood (CMLE) and joint 
maximum likelihood (JMLE) are alternative methods of estimation typically applied to the 
Rasch family of item response models. For the models discussed in this paper, all of these 
methods assume we are measuring a single latent trait (unidimensionality) and that items are 
independent at a given value of the latent trait (conditional independence; see Hambleton & 
Swaminathan, 1985). We will not discuss the details of these estimation methods, but on a 
practical level, these methods are synonymous with different types of IRT software. Programs 
such as BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996), MULTILOG (Thissen, 1991), 
ICL (Hanson, 2002), and PARSCALE (Muraki & Bock, 1997) offer MMLE for 2PL, 3PL, and 
polytomous response models. WINSTEPS (Linacre, 2011) and jMetrik (Meyer, 2013) provide 
JMLE for Rasch family models, and the eRM (Mair & Hatzinger, 2007) package in R provides 
CML for Rasch family models.

	 Sample size requirements are another practical consideration for IRT. As a rule of 
thumb, the more parameters in the model, the larger the sample size that is needed to obtain 
stable parameter estimates. Rasch models require as little as 100 examinees (Wang & Chen, 
2005), but the 3PL model may require at least 1,500 (Mislevy & Stocking, 1989). These sample 
size requirements are prohibitive for small classrooms and they are one reason why IRT is 
not used very often in traditional course settings. MOOCs, on the other hand, enroll tens of 
thousands of students, which is more than enough to obtain accurate estimates with any IRT 
model. Large class sizes are one reason why IRT and MOOCs are the perfect marriage.

Scale Linking in Item Response Theory

	 Data must be collected in a particular way in order to implement scale linking. In an 
equivalent groups design, each test form is given to a random sample of examinees. Items can 
be completely unique to each test form because the groups are randomly equivalent; test forms 
are considered to be the only reason for difference in test performance. Consequently, person 
ability estimates form the basis of scale transformation coefficients that place each form on a 
common scale. 

	 A popular alternative to the equivalent groups design is the common item nonequivalent 
groups design (Kolen & Brennan, 1987). In this design, two different groups receive a different 
test form. For example, one group receives Form X and another group receives Form Y. Each 
test form includes a set of items unique to the form and a set of items common to both forms. 
Examinees are considered to be the only reason for differences in performance and parameter 
estimates for the common items form the basis of scale transformation coefficients. This design 
is easy to implement in practice but it requires great care in creating the set of common items 
that are embedded on each test form.

	 Overall, each form is designed to measure the same content and adhere to the same 
test specifications. Common items embedded in each form are selected to be a mini or midi 
version of the complete test and they are placed in about the same position on each form (Kolen 
& Brennan, 2004; Liu, Sinharay, Holland, Curley, & Feigenbaum, 2011). In a mini version of 
the test, common items cover the same range of difficulty values as the complete test, and in 
a midi version, common items cover a narrower range of difficulty. Table 1 demonstrates a 
common item design with item parameters from two different forms. The items in bold are the 
items shared by both forms. Once we collect data we can estimate parameters and place both 
forms on the same scale.

	 As noted earlier, parameters in an IRT model are invariant up to a linear transformation. 
If you apply a linear transformation to the person ability parameter and the same transformation 
to the item parameters, the probability of a correct response remains the same as it was prior 
to any transformation. This implies that there are no unique parameter values that determine 
the scale; any linear transformation of the parameters would result in the same probabilities. 
This problem is referred to as scale indeterminacy and it is resolved in practice by arbitrarily 
setting the person ability scale to have a mean of zero and a standard deviation of one during 
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the estimation process. A consequence of resolving scale indeterminacy in this way is that 
an item that is included on two different test forms will have different parameter estimates. 
However, we can use the differences in item parameter estimates from both forms to identify 
the linear transformation that places both forms on the same scale.

	 Steps for linking test forms to a common scale differ depending on whether estimation 
is conducted concurrently or separately. In concurrent calibration, data from all test forms 
are combined into a single data set and the parameters are estimated simultaneously. The 
overlap in common items will result in estimates that are on a common scale. No further 
work is needed to place Form X parameters on the scale of Form Y. It is handled automatically 
during estimation. Fixed common item calibration is a slight variation of this procedure that 
also places parameters on a common scale during the estimation routine. In this procedure, 
common item parameters on Form X are fixed to their estimated values on Form Y. 

	 In separate calibration, parameters for each form are estimated separately and an 
additional step is needed to link estimates to a common scale. A consequence of setting the 
mean person ability to zero and standard deviation to one during separate estimation of 
Form X and Form Y parameters is that examinees taking Form X will have the same mean 
ability level as those taking Form Y even though the two groups may not be equivalent. 
That is, we end up with within group scales. To adjust the Form X parameters, we use the 
linear transformation                        to place a Form X ability,      , on the scale of Form Y. 
Similar transformations are applied to the item parameters. Discrimination is transformed 
by                     and difficulty is transformed by                        where the items parameters 
with an X subscript are parameters that belong to Form X. A and B are transformation coef-
ficients derived from the common item parameters, and there are four popular methods for 
computing them (Hanson & Béguin, 2002).

	 The mean/sigma (Loyd & Hoover, 1980) and mean/mean (Marco, 1977) methods 
are referred to as method of moments procedures because they use only item parameter 
descriptive statistics to compute the transformation coefficients. They are easy to imple-
ment and can be computed by hand. For example, mean/sigma transformation coefficients 
can be computed from the summary statistics in Table 2. The slope coefficient is computed 
from the common item estimates by dividing the standard deviation of Form Y item dif-
ficulty by the standard deviation of Form X item difficulty,                          . The intercept 
coefficient is the mean item difficulty of Form Y subtracted by the rescaled Form X mean 
item difficulty,                                .Using Table 2, these coefficients are 
and				       . The slope coefficient differs slightly from the value 
reported for the mean/sigma method in Table 2 because of rounding. The values in Table 
2 are more accurate. The mean/sigma method gets its name because it uses the mean and 
standard deviation of item difficulty parameters. The mean/mean method, on the other 
hand, only uses the item discrimination and item difficulty means. It does not involve the 
computation of standard deviations. Specifically, the slope coefficient for the mean/mean 
method is                         .  . The intercept is computed in the same way as in the mean/
sigma method. Using the values in table 2, the slope is			          and the 
intercept is                                                . These values are slightly different from the tabled 
values due to rounding.
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	 Method of moments procedures are attractive because of their simplicity, but their 
main limitations are that they do not use all of the item characteristics and they can be 
affected by outliers. Alternatively, the Haebara (Haebara, 1980) and Stocking-Lord procedures 
(Stocking & Lord, 1983) are referred to as characteristic curve methods because they use 
item and test characteristic curves to obtain the transformation coefficients. Characteristic 
curve methods are computer intensive and require specialized computer software such as 
STUIRT (Kim & Kolen, 2004), the plink package in R (Weeks, 2011), and jMetrik (Meyer, 
2013). Stocking-Lord and Haebara transformation coefficients are listed in Table 2. We used 
coefficients from the Stocking-Lord procedure to transform Form X parameters to the scale 
of Form Y (see Table 3). Parameters estimates in Table 3 are now on a common scale.

	

	 Among the various methods for scale linking, the Stocking-Lord procedure works 
best when items are all of the same type (Baker & Al-Karni, 1991; Wells, Subkoviak, & Serlin, 
2002), and the Haebara method works best in mixed format tests such as those that combine 
multiple-choice and short answer type items (Kim & Lee, 2006). Concurrent calibration and 
fixed common item procedures also work very well, particularly compared to the method of 
moments procedures. However, these two methods make it difficult to detect items that have 
an undue influence on linking process.

Score Equating with Item Response Theory

	 Testing programs report scores to examinees in a scaled score metric that is usually 
limited to positive whole numbers. For example, the GRE Verbal Reasoning scaled score 
consists of one point increments between 130 and 170. The purpose of scaled scores is 
to distinguish them from simple sum scores and have a metric that is independent of test 
forms. They are obtained by either transforming an examinee’s IRT ability estimate or an 
examinee’s sum score. In the former case, no further work is needed to produce comparable 
scaled scores; the linking process has already adjusted for difference among test forms and 
placed parameters on a common scale. IRT ability parameters are simply transformed to the 
scaled score and the work is done. 
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	 Recall that IRT ability parameters are invariant in different samples of items but 
observed scores are not. As such, if the scaled score scale is defined as a transformation of 
the observed score, an additional equating step is needed to adjust test forms for differences 
in difficulty. True score equating and observed score equating are two options in an IRT 
framework. True score equating is easier to implement as it involves test characteristic curves 
from two forms. As illustrated in Figure 4, Form X is easier than Form Y at low levels of 
ability, but at high levels of ability, the opposite is true. To adjust for these differences in test 
difficulty, we find the Form Y equivalent of a Form X score. As illustrated by arrows in Figure 
4, the steps involve (a) choosing a Form X true score value (21 in Figure 4), (b) finding the 
Form X ability level that corresponds to that true score (0.61 in Figure 4), (c) computing the 
Form Y true score at the Form X ability level (22.3 in Figure 4). Thus, a Form X true score of 
21 is equivalent to a rounded Form Y true score of 22. 

	 Although true score equating is easy to illustrate, it actually requires computer 
intensive methods to implement. POLYEQUATE (Kolen & Cui, 2004), plink (Weeks, 2011), 
and jMetrik (Meyer, 2013) are three free programs that implement true score equating. Table 
4 lists all of the equated true score values for Form X and Form Y. Scores from the two 
different test forms are now comparable. They have the same meaning and lead to fair and 
equitable decisions about student performance. 

Discussion

	 Despite the increasing impact of MOOCs on higher education, cheating poses a threat 
to online assessments in these courses. Students may get illicit help via communication 
devices or even get access to answers before the assessment. Multiple test forms and extensive 
item pools can improve test security and increase fairness in online testing, but they leave 
open the possibility that test forms will differ in difficulty and give an advantage to students 
completing the easier form. Scale linking and score equating procedures must accompany 
the use of multiple test forms to ensure comparability among scores. Classical test theory 
methods commonly used in traditional course assessment can be extended to classical 
methods of score equating. However, these methods suffer from limitations such as population 
dependence. Large class sizes that are typical for MOOCs make a wide range of IRT models 
available for online assessment. IRT based scale linking and score equating overcome many 
of the problems with classical methods and make scale linking and score equating relatively 
easy to implement in practice.

	 Multiple test forms prevent unfair advantages due to prior knowledge of test items and 
the sharing of answer keys, but they do not prevent all forms of cheating. Indeed, using a single 
countermeasure to combat cheating is like protecting your home from burglary by locking 
the doors and leaving the windows open. An effective testing program makes use of multiple 
countermeasures to address all points of vulnerability. Multiple test forms should be combined

Using a single counter–
measure to combat 
cheating is like protecting 
your home from burglary 
by locking the doors and 
leaving the windows open.
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with other counter measures such as proctored testing to combat cheating in a comprehen-
sive way. Fair and equitable testing is achieved by minimizing all forms of cheating and en-
suring the comparability of scores from different test forms. Accomplishing this criterion in 
practice will drive more institutions to offer course credit for MOOC completion and further 
expand the influence of these courses on higher education throughout the world.

Limitations

	 We simulated the data in this paper using a 3PL model. We obtained parameter 
estimates reported in the tables with ICL (Hanson, 2002) and conducted the linking and 
equating procedures in jMetrik (Meyer, 2013). We used simulated data to demonstrate IRT, 
scale linking, and score equating. As such, the data perfectly fit the 3PL model and are void 
of the usual noise of real test data. Our data also make it appear that equating does not 
change scores by much. However, this result is not always the case. Scores could change 
more substantially with real test data and greater difference in test forms. However, the 
only way to know the extent of the change in scores is to conduct the complete linking and 
equating process.

Accomplishing this 
criterion in practice will 
drive more institutions 

to offer course credit 
for MOOC completion 
and further expand the 

influence of these courses 
on higher education 

throughout the world.
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