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Abstract
The article addresses the question of how the assessment process with 

large–scale data derived from online learning environments will be dif-
ferent from the assessment process without it. Following an explanation 

of big data and how it is different from previously available learner data, 
we describe three notable features that characterize assessment with big 
data and provide three case studies that exemplify the potential of these 

features. The three case studies are set in different kinds of online learning 
environments: an online environment with interactive exercises and intelli-
gent tutoring, an online programming practice environment, and a massive 
open online course (MOOC). Every interaction in online environments can 

be recorded and, thereby, offer an unprecedented amount of data about 
the processes of learning. We argue that big data enriches the assessment 
process by enabling the continuous diagnosis of learners’ knowledge and 

related states, and by promoting learning through targeted feedback.

The Future of  Data–Enriched Assessment

 A fundamental goal of education is to equip people with the knowledge and skills that 
enable them to think critically and solve complex problems. The process of quantifying the 
degree to which people have acquired such knowledge and skills is at the heart of assessment. 
Over the last decades, large–scale assessment of knowledge has become increasingly 
standardized, primarily to provide policy and other decision makers with clearer signals on 
the effectiveness of educational institutions and practices (Shavelson, 2007). Yet the merits 
of effective assessment extend far beyond informing policy decisions: instructors can gain 
valuable insights into the effectiveness of their instructional methods and learners receive 
feedback on their learning approach and overall progress. In providing an opportunity to 
apply the acquired knowledge and skills with subsequent feedback, assessment can promote 
learning if designed appropriately (Black & Williams, 1998; Gikandia, Morrowa, & Davisa, 
2011; Roediger & Karpicke, 2006).

 Education is becoming ever more augmented by technology to create new ways 
of interacting with educational content and communicating with instructors and peers. 
A number of promising technologies fall under the broad category of online learning 
environments, which rely on digital, networked systems but vary substantially in the features 
they provide to instructors and learners. Some such environments attempt to provide a 
holistic learning experience by integrating instruction, assessment, and social interaction. 
Other environments serve as a complementary resource to augment an in–person learning 
experience. In this paper, we present three case studies, which are set in different kinds 
of online learning environments: an online environment with interactive exercises and 
intelligent tutoring, an online programming practice environment, and a massive open 
online course (MOOC). The latter is an online learning environment in which thousands 
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of people worldwide can learn about a given topic from lecture videos, quiz questions, longer 
assignments, and discussions with peers on a forum, to name but a few of the many forms of 
interaction that can occur in these environments (Kizilcec, Piech, & Schneider, 2013). Similar 
to non–educational online content providers, every interaction in these environments can be 
recorded and, thereby, offer an unprecedented amount of data about the processes of learning. 

 Online learning environments hold the potential to better support learning and to 
create opportunities for novel forms of assessment. The question we address in this article 
is: how will the assessment process with large–scale data derived from online learning 
environments be different from the assessment process without it? To address this question, 
we first explain our definition of big data, and how we believe it is different from previously 
available learner data. We then present three notable features that characterize assessment 
with big data and provide three case studies that exemplify the potential of these features. We 
argue that big data enriches the assessment process by enabling the continuous diagnosis of 
learners’ knowledge and related states, and by promoting learning through targeted feedback.

Big Data
 Big data, in the context of assessment, is learner data that is deep as well as broad.1 Large 
amounts of data can occur not only across many learners (broad between–learner data), but 
also within individual learners (deep within–learner data). Moreover, the depth of data is 
determined not only by the raw amount of data on a given learner, but also by the availability 
of contextual information that adds semantic meaning to within–learner data. Clickstream 
data is a good example of big data that tends to fall short of providing meaningful information 
in the context of assessing learning (cf. Case Study 1), although it may be sufficiently deep for 
assessing persistence (cf. Case Study 3). Therefore, the dimensionality of big data depends 
fundamentally on the object of assessment. More importantly, the converse is also true: new 
forms of data–enriched assessment require collecting deeper and broader data in order to gain 
insight into the new object of assessment.

 Large–scale standardized tests, for instance, are broad but not deep; they yield large 
amounts of data consisting of test scores for thousands of learners with the primary focus of 
providing comparisons across learners, but which provide relatively little information about 
each individual learner. In contrast, a virtual reality learning experience (e.g., a mathematics 
lesson in a virtual classroom) can track learners’ body positions to generate a substantial 
amount of behavioral and other information, but only for a small number of learners. Data–
enriched assessment in appropriately instrumented online learning environments can, for 
a large number of learners, provide insights into each individual learner’s problem–solving 
processes, strategic learning choices, misconceptions, and other idiosyncratic aspects of 
performance. In practice, this typically implies that information about learner performance is 
plentiful enough to gain new insights by applying modern data mining and machine learning 
methods (Romero, Ventura, Pechenizkiy, & Baker, 2011), such as hidden Markov modeling 
(cf. Case Study 1), probabilistic graphical modeling (cf. Case Study 2), or natural language 
processing methods (cf. Baker & Corbett, 2014). 

 Previously available data in assessment have been large in one of the two dimensions, 
but rarely before have education researchers been in a position to collect large amounts of 
data on both dimensions at once. The promise of big data in online learning environments is 
that capturing semantically meaningful information both across and within learners provides 
a powerful basis for assessing and supporting learners. 

Elements of  Data–Enriched Assessment
 Deep and broad learner data in an interactive online learning environment can enable 
assessment tasks that are continuous, feedback–oriented, and multifaceted.

 Continuous. In an online learning environment, an individual’s learning process can 
be continually observed: the steps in solving a math problem, the chemicals combined on a 
virtual lab bench, and the learner’s contributions to a discussion forum are all captured by the 
system. Interactions with learning resources, with peers, or with the instructor each contain 
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evidence about the concepts and skills over which the learner currently has command. There 
is no need to distinguish between learning activities and moments of assessment. Instead, a 
model of the learner’s knowledge state is continually assessed and updated – as are models 
of other facets of the learner, as described below. This enables learning to be modeled as an 
ongoing process rather than as a set of discrete snapshots over time. 

 Feedback–oriented. Feedback is central to an assessment process that is designed 
to support learning. Well–designed feedback presents the learners’ current state, along with 
enough information to make a choice about the appropriate next action. Feedback can be 
provided directly to the learner, to an instructor, or to the system (e.g., an adaptive test or 
an intelligent tutor). Providing learners with the choice of when to receive feedback and an 
opportunity to reflect on feedback may have additional benefits for developing metacognitive 
competencies. Drawing on prior work on the relative benefits of different types of feedback 
for learners with particular characteristics, online learning environments can also provide 
personalized feedback. For instance, based on a design principle proposed by Shute (2008) in a 
review of the feedback literature, the system could offer direct hints to low–achieving learners 
and reflection prompts to higher–achieving learners.

 The effective presentation of feedback in online learning environments poses an 
interesting design challenge. Graphs, maps, and other information visualization techniques 
can be used to represent learner progress through the multiple concepts and competencies that 
learners are attempting to master. The information visualization community has developed an 
increasingly sophisticated visual language for representing complex datasets (e.g., Ware, 2013), 
and the efficacy of particular visualization strategies for supporting learners and instructors is 
a fruitful area for future research.

 Multifaceted. Learners’ abilities to learn from resources or interactions with others 
is influenced by factors beyond their current knowledge state. There are many reasons 
that a learner may start a task, struggle with it, or complete it successfully. Detecting these 
factors can contextualize observations about cognitive competencies, which provides the 
system or an instructor with additional information to target feedback or an intervention. 
The learner’s life context is an important facet for developing deeper understanding of the 
learner’s experience (cf. Case Study 3). Affective state – the learner's mood or emotions 
– can also have an impact on the learning processes (cf. Baker & Corbett, 2014), as can 
interpersonal competencies, such as the ability to communicate and collaborate effectively 
with others (De Laat & Prinsen, 2014).

 Other critical facets of the learner include self–regulation – a learner’s awareness and 
effective application of study strategies (Zimmerman, 1990); goal orientation – a learner’s 
purpose in engaging with the learning activity (Pintrich, 2003); and mindset – a learner’s 
beliefs about whether intelligence is fixed or malleable (Dweck, 2006). In addition, a rich 
history of research in social and educational psychology highlights the impact of learners’ 
attributions of social cues in their environment (Cohen & Sherman, 2014; Steele, 1997), for 
example, whether a learner experiences a sense of social belonging in an environment (Walton 
& Cohen, 2011). Each of these intrapersonal, affective, contextual, and interpersonal states 
can be included in a model as latent states of the learner or directly reported features. Complex 
multifaceted models are enabled by big data and can advance research on the impact of each 
of these factors on learning.

 The multiple facets of a learner translate into key competencies for individuals to be 
productive and resilient in future educational and professional settings. Explicitly assessing these 
competencies as desired outcomes of learning can inform the design of learning environments 
to support their development and thereby better serve learners for the long term. 

Case Studies
 In the following case studies, we draw on our work in three online learning 
environments to describe multiple approaches to data–enriched assessment. In each case 
study, learner data is deep because the learner is observed continuously, and broad as a result 
of the number of learners who engage with the online learning environment. Additional data 
dimensionality is added by specifying the relationship of learner activities to the concepts 
requisite for successful task engagement (Case Study 1) and to the appropriate next steps in a 
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problem–solving process (Case Study 2). This specification, or “expert labeling,” can occur in 
advance of developing an initial model or in the process of refining a learner model. Regardless 
of variations in the object of assessment or the timing of expert labeling, each case study uses 
machine learning techniques to develop or refine a learner state model. 

 In Case Study 1, the Open Learning Initiative, the assessment tasks are designed and 
embedded within the learning process. Data collected on learner performance on assessment 
tasks are used to diagnose the knowledge state of the learner and give feedback in real time 
and to refine underlying models. In Case Study 2, learners engage in open–ended software 
programming tasks, and assessment is focused on the processes of problem solving. Moreover, 
patterns in these processes are used to automatically generate suggestions for future learners 
who are struggling with the task. Case Study 3, focused on MOOCs, addresses the challenge 
of assigning meaning to learner activities that are outside of problem solving, such as forum 
interactions and video watching habits. 

 Case study 1: The open learning initiative (OLI). Open Learning Initiative (OLI) 
at Stanford University and Carnegie Mellon University is a grant funded open educational 
resources initiative. Data have been collected from over 100,000 learners that have 
participated in an OLI course for credit at academic institutions of all Carnegie Classifications 
and from over 1,000,000 learners that have engaged in one of the free and open versions of 
an OLI course.

 OLI courses comprise sequences of expository material such as text, demonstration 
videos and worked examples interspersed with interactive activities such as simulations, 
multiple choice and short answer questions, and virtual laboratories that encourage flexible 
and authentic exploration. Perhaps the most salient feature of OLI course design is found 
in the intelligent tutors embedded within the learning activities throughout the courses. An 
intelligent tutor is a computer program whose design is based on cognitive principles and 
whose interaction with learners is based on that of a good human tutor, making comments 
when the learner errs, answering questions about what to do next, and maintaining a low 
profile when the learner is performing well. The tutors in OLI courses provide the learner 
tailored feedback to individual responses, and they produce data.

  OLI learning environments and data systems have been designed to yield data that 
inform explanatory models of a student’s learning that support course improvement, instructor 
insight, learner feedback, and the basic science of learning. Modern online learning environments 
can collect massive amounts of learner interaction data; however, the insights into learning 
that can be gleaned from that data are limited by the type of interaction that is observable 
and by the semantic tagging (or lack of tagging) of the data generated by the interaction. 
Many MOOC platforms and traditional learning management systems collect clickstream data 
that can measure frequency and timing of learner log–ins, correctness (or incorrectness) of 
learner responses, learner use of resources, and learner participation in forums. While such 
clickstream data may be used to predict which learners are likely to complete the course, they 
do not explain if or how learning is occurring.  

  In OLI, the learning data are organized by learning objective. Learning objectives 
identify what a learner should be able to do or demonstrate they know by the end of the 
learning experience. Each learning objective comprises one or more skills. Skills break down 
the learning objective into more specific cognitive processes.

  The course design process starts with the articulation of the learning objectives and 
skills. During the design of the course, the opportunities for learner action (e.g., answering a 
question, taking a step in a multi–step task, acting on a simulation) in an interactive activity are 
associated with the learning objectives and skills. The relationships among learning objectives, 
skills and learning activities are fully many–to–many: each learning objective may have one or 
more component skills, each skill may contribute to one or more learning objectives, each skill 
may be assessed by one or more steps in a task, each task step may assess one or more skills. 
Typical OLI courses comprise about 30 to 50 learning objectives and 100 to 1,000 skills.

 Teams of faculty domain experts, learning scientists, human–computer interaction 
experts, assessment experts, and software engineers work collaboratively to develop the OLI 
courses and a parameterized model that predicts learner mastery of component skills. Skills 
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are ranked as easy, moderate, or difficult based on perceived complexity. Initially, the labels 
are based on an analysis of the domain and on the expert’s prior teaching experience. The 
rankings are used to adjust baseline parameters and, during the initial design of the course, the 
adjustments are heuristic, not empirical. The model associates learner practice with individual 
skills rather than with larger topics in a domain or activity in the course in general. The 
underlying theory is that learning is skill specific and it is practice on the specific skill that 
matters rather than practice in the course in general.

 The skill model that the development team has created is considered naïve until it has 
been validated by data. Machine learning algorithms support learning researchers to improve 
upon the initial human–generated model by searching for models of learning that produce a 
better fit to the learner–generated data. The algorithms split and combine existing skills and 
suggest new skills where appropriate but, to date, a human must supply labels for the changes 
suggested by the algorithm. The researchers use the data to evaluate the fit of the model and 
to tune the parameters for the model. The course design team also uses the data to refine the 
learning activities and the response–level feedback.

  The skill model serves a number of purposes, including assisting in the iterative 
course improvement process; measuring, validating and improving the model of learning that 
underlies each course; and offering information necessary to support learning scientists in 
making use of OLI datasets for continued research. In the original versions of OLI courses, 
learning is modeled using a Bayesian hierarchical statistical model with the latent variables 
of interest, learners’ knowledge state, becoming more accurate as more data is accrued about 
performance on a given skill. Skills are modeled using a multi–state hidden Markov model. The 
Markov model is hidden because the knowledge states cannot be observed directly; inferences 
need to be made about which state a learner is in based on the learner’s answers to questions. 
In the original models, individual skills are treated as mathematically independent variables 
and it is assumed that learning a skill is a one–way process: once a skill is learned, it is not 
unlearned.

 One of the most important uses of the skill model is to support learning analytics for 
instructors and learners. The OLI system analyzes the learner activity in real time against 
the skill model. When a learner responds to a question or engages in an OLI activity, the 
system uses the skill model mapping to identify the skills related to that question or activity. 
The learning estimates are computed per skill per learner and use simple algorithms with low 
computational overhead to allow real time updates. Data are aggregated across skills for a given 
learning objective and reported to instructors and students at that level. It is this real time 
feedback to instructors and students about mastery of learning objectives that helps guide the 
instructional and learning process throughout the course. 

 Case study 2: Code webs. The Code Webs Project is a Stanford machine learning 
research collaboration to analyze logs of learners completing open ended programming 
assignments with the intention to (a) uncover new perspectives into individual learner abilities, 
(b) paint a picture of how learners in general approach problems, and (c) understand how to 
help learners navigate complex programming assignments.

 The project studies logs of learners solving assignments in three courses: The Code.org  
Hour of Code (Code.org), The Coursera Machine Learning class (ML) and Stanford’s 
Introduction to Computer Science course (CS1). The Code.org and ML courses are both open 
access online courses, whereas the CS1 is a traditional in–person college course. The data are 
wide and deep. In each course learners complete a set of challenging programming tasks and 
each time a learner saves or runs an intermediate solution to a task, an entire snapshot of 
their current work is recorded. When the learner submits a final answer, or stops working on 
an assignment, all of the learner’s partial solutions are composed into a trajectory. From the 
three courses, the Code Webs project has compiled trajectories from over 1,000,000 learners.

 One of the most generally applicable results of this research has been to demonstrate 
the tremendous potential towards better assessment that comes from digital logs of how 
learners work through assignments, as opposed to just the learner’s final submission. In future 
educational settings, the data on how learners develop their homework solutions from start to 
finish will become more ubiquitous and machine learning techniques applied to this format of 
data will generate important insights.



 The first nugget that can be discovered from learner trajectories is a depiction of how 
learners, both as a cohort and individually, solve open ended work. In CS1, the Code Webs team 
instrumented the programming environment that learners used to generate their homework 
solutions. Using the data gathered, the research team modeled how groups of learners proceed 
through the assignment, using a Hidden Markov model that involved: 

a. Inferring the finite set of high–level states that a partial solution could be in.

b. The transition of probabilities of a learner moving from one state to another.

c. The probability of seeing a specific partial solution given that a learner is in  
  a state.

Once transition patterns for each learner had been fit, we then clustered the transition patterns 
to produce different prototypical ways that learners approach programming assignments. 

 In the CS1 dataset we discovered two notable prototypical patterns: A “Gamma” group 
whose progress is defined by steady work towards the objective and an “Alpha” group in which 
learners tend to get stuck in states where they would spend a lot of time before moving back 
to a previous state and then manage to make a large jump to a solution. Figure 1 demonstrates 
the pattern for a particular assignment in CS1.

 In CS1, almost all learners turn in working solutions to the class assignments; however 
on the class midterms and finals, some learners are unable to solve basic tasks. A promising 
result of this work was that the learners’ problem solving patterns on the first assignment were 
more predictive of midterm grades than were their final scores on the first assignment. 

 Data logs on learners’ solving problems can give insights into how learners are 
approaching problems and to what extent they understand the material. In addition to finding 
prototypical patterns, the autonomous process also computes to what extent each learner’s 
progress matches the common patterns, and the overall distribution of the class.

 Trajectories can also be used to autonomously learn what learners should do when 
working on open ended problems. For example, if we observe thousands of past learners who 
got stuck on the same problem, it seems plausible that we could use the subsequent actions 
that they took to predict the ideal solution to that problem. To explore this avenue, the Code 
Webs project team looked at the trajectories from half a million predominantly middle school 
learners solving the same programming assignments in Code.org’s Hour of Code. We devised 
an experiment where experts generated a strategy of what partial solution a learner should 
transition to next given their current state and, using trajectory data, learn an algorithm that 
could recreate the expert strategy. 
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Figure 1. Visualization of the two prototypical patterns for solving an open ended assignment in  
CS1. While most learners submitted a correct final solution, how they arrived at their answer was 
more predictive of miderm score. Only the most popular states and transitions are visualized.



 Surprisingly, many reasonable statistics on learner trajectories are not particularly 
useful for predicting what expert teachers say is the correct way forward. The partial solution 
that learners most often transition to after encountering a problem does not tend to correspond 
with what experts think learners should do. The wisdom of the crowd of learners, as seen 
from this angle, is not especially wise. However, there are other signals from a large corpus of 
trajectory data that shed light onto what a learner should do from a current partial solution. 
One algorithm generates a data–driven approximation of a complete journey from any current 
state to a solution that it expects would be most common if students were evenly distributed 
amongst the problem solving space. The first step in the generated journey overwhelmingly 
agrees with expert labels of how learners should proceed. This algorithm can be applied to 
logs of learners working on problems for which there are no expert labels, and will produce an 
intelligent strategy for what learners ought to do.

 By modeling how learners progress through an assignment we open up the possibility 
for data driven feedback on problem solving strategies. By learning a predictor for how experts 
think a learner should proceed through a project, the process for generating a hint is simplified, 
both because we know what part of an open ended problem a stuck learner should work on 
next and we know what change they should make. Since the feedback can be autonomously 
generated it could be continuously and immediately provided to learners.

 Trajectories seem like a promising medium through which we can leverage large 
amounts of data to generate better and more scalable assessment for learners that do their work 
in an instrumented environment. Though this case study was about computer programming, 
the algorithms used would apply to any trajectories of learner data, given an appropriate 
representation of partial solutions. While the Code Webs project has made progress towards its 
goal, this is still an active line of research, and better techniques will help uncover the deeper 
educational gems hidden in how learners work through assignments.

 Case study 3: MOOCs and multifaceted dropout factors. Big data inspires us to ask 
questions that we could not ask with previous types of educational data. Among these questions 
is whether we can predict learners’ persistence in a course and understand the challenges they 
encounter, given data from their interactions with the system. In earlier learning environments, 
it was much easier to acquire data about a learner’s skill through assessment tasks than it was 
to learn about the learner’s motivation, volition, or other latent factors that affect persistence 
similarly. Newer online platforms record new types of interactions that make assessment of 
such latent factors more feasible. For instance, passive forum participation is a potential signal 
of motivation for learners who did not participate actively in the forum. Total time of a learner 
on the course site might be a signal of time availability.

 This case study describes our attempt to leverage the richer types and scale of data 
to predict who is going to drop out from a MOOC, and whether they are going to drop out due 
to difficulty, lack of motivation, or lack of time. To predict who will drop out, we developed an 
algorithm that uses features extracted from learners’ interactions with the videos, assignments, 
and forums in multiple MOOCs (Halawa, Greene, & Mitchell, 2014). Our model uses four 
features we found highly correlated with dropout: the amount of time taken to complete the 
first week’s videos, assignment scores, and the fraction of videos and assignments skipped. The 
model predicted dropouts with a recall of 93% and false positive rate of 25%.

 We developed an instrument and collected data to predict the reason(s) that learners 
drop out. We emailed a diagnostic survey to 9,435 learners who were red–flagged by our 
dropout predictor in a course. The survey was sent out via email in the middle of the third 
week of the course, and 808 recipients responded to the survey (a typical survey response rate 
in a MOOC). Constructing our diagnostic models based on the optional survey introduced a 
selection bias, whose consequences on the suitability of the designed interventions to non–
respondents are the subject of future research. In the survey, learners were asked to report on 
various persistence factors, including their commitment level (the extent to which learners 
believed they committed a sufficient portion of their free time to the achievement of their 
course goals), and perceived difficulty (how difficult they found the course materials, including 
assessment tasks). Learners were also asked to report on the average amount of weekly free 
time they had. We used each learner’s responses to compute three binary variables indicative 
of potential interventions:
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1.  Dropped out due to procrastination (which results from a lack of volition)

2.  Dropped out due to difficulty

3.  Dropped out due to lack of time

 Next, we used learner interaction data to compute scores for various activity features 
describing the learner’s pace, learning session times, and interactions with the lecture videos, 
assignments, and forums as shown in Table 1. We selected the features that we believe would 
correlate with particular reasons for dropout (or lack thereof). For instance, joining a study 
group may be predictive of the learner’s intention to persist in the course for a long period. 
Giving up on problems after a first incorrect attempt might indicate a lack of motivation or grit.

 

We trained three logistic regression models, one for predicting each of the three dropout factors, 
which meant that a learner could be red–flagged for multiple dropout reasons. Accuracy was 
measured for each risk factor individually via recall – the fraction of learners who self–reported 
the risk factor that was red–flagged by the prediction model – and false positive rate (fpr) – the 
fraction of learners who were self–reportedly unaffected by the risk factor but red–flagged by 
the predictor (see Figure 2).
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Figure 2. Prediction accuracy for our dropout diagnostic models
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Table 1 
Candidate Features Used to Predict Reasons for Dropout



 The procrastination detection model was able to predict procrastination with a 
false positive rate (fpr) of 0.19 at a recall of 0.73. The key contributing features of the model 
were interactions with the forum and assignments. We generally observed that learners with 
lower motivation or volition spent all of their time on the course in activities that yield direct 
personal rewards, such as viewing videos, taking assignments, reading the forum, or posting 
questions to the forum. Activities such as joining a study group, socializing on the forum, and 
commenting on other people’s posts originated mainly from learners who self–reported higher 
levels of volition. We were also able to predict learners who reported time constraints with 
almost the same fpr but a lower recall. Contributing features included the patterns of spending 
time on the course, and it was observed that learners who report less free time tend to have 
shorter learning sessions. Predicting reports of perceived difficulty was less accurate due to 
the weakness of correlation between reported difficulty and our features including assignment 
scores. Improving this prediction is a subject of our future research.

 This case study exemplifies two facets of data–enriched assessment, namely its 
multifaceted and feedback–oriented nature. In this study, we focused on specific facets of 
learners’ contexts that are critical for their success in the learning environment: procrastination 
behavior, time constraints, and perceived difficulty. Moreover, this work will be extended to 
provide targeted feedback about these non–cognitive factors to at–risk learners. Potentially, 
such modeling capability allows us to assess these persistence factors and design more 
effective interventions that address the restraining and promoting forces relevant to each 
individual learner.

General Discussion
 The preceding case studies illustrate how big data can enrich assessment by directly 
supporting learning as it assesses multiple facets of learning such as competencies and 
persistence. We argue that this is for three reasons. First, the next generation of online learning 
environments allows us to collect data continuously and at large scale. In turn, large–scale 
data collection allows researchers to more effectively use modern statistical and machine 
learning tools to identify and refine complex patterns of performance. For example, the work 
on programming trajectories described above illustrates that massive amounts of time–series 
data on learner programming problems can be used to predict later success and potentially to 
provide just–in–time hints.

 Online learning environments also allow educators to record multifaceted 
measurements of skills and tendencies that normally evade traditional assessment tasks. The 
work on identifying dropout factors in MOOCs illustrates this point. Halawa and colleagues 
(2014) initially measured motivational variables using surveys, which are a familiar 
assessment instrument for academic motivation researchers. But they were then able to 
predict survey responses using data on forum engagement, pace, and other aspects of course 
interaction. In a traditional educational setting, these or analogous behavioral variables 
would be largely unmeasured. In addition, the continued development of educational games, 
complex simulations, and VR environments makes us confident that future educators will 
have a much more multifaceted set of data than ever before (Bailenson et al., 2008; Schwartz 
& Arena, 2013).

 Third, and perhaps most crucially for learning, online learning environments are 
capable of delivering personalized feedback at the right moment. The Open Learning Initiative 
demonstrates this advantage by harnessing decades of research into cognitive skill development 
in order to model learner knowledge and provide more appropriate instruction in real time. 
Meta–analyses of what works in improving learning have placed appropriate feedback at or 
near the top of the list (Hattie, 2013), and researchers have argued that effective feedback 
is also the primary source of the oft–quoted “two–sigma” positive effects of tutoring (Bloom, 
1984). Big data allows educators to build and refine model–driven feedback systems that can 
match and surpass human tutors (Corbett, 2001).

 Finally, all of the examples in this article illustrate that big data can benefit multiple 
stakeholders in the learning ecosystem. As a more formative enterprise, data–enhanced 
assessment can benefit learners themselves, but it can also provide feedback to instructors 
to guide their attention and teaching strategies. The benefits of data–enriched assessment are 
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we could not ask with 
previous types of  
educational data.



available not only to instructors teaching in purely online environments but also to instructors 
teaching in hybrid (a blend of online and face to face instruction) or traditional classrooms. In 
hybrid environments, the data collected from the students in a class provide information to the 
instructor to make immediate adjustments to classroom teaching. Even instructors who are 
teaching in traditional classrooms without any technology will benefit from the insights about 
how students learn a subject that are developed from the big data collected in online learning 
environments. Big data have also clearly informed researchers to develop better learner models 
and experiment with just–in–time interventions. And Macfadyen, Dawson, Pardo, and Gaševic 
(2014) show that big data can inform questions about equitable and effective learning at a 
policy level.

Conclusion
 We have been quite positive about the promise of data–enriched assessment, and so 
it seems reasonable to end with a note of caution. There is a difference between how we use 
assessment tasks and what they are intended to measure, and the history of psychometrics 
is littered with incorrectly interpreted test results. How will big data affect the interpretation 
and validity judgments of the next generation of assessment tasks? It may be helpful to look 
to the misapplication of current generation assessment tasks for lessons. Assessment experts 
generally agree that since the start of No Child Left Behind, data from high–stakes tests in K–12 
settings have been used to make inaccurate judgments about the performance of teachers, 
schools, districts, and states in an attempt to establish benchmarks for accountability and 
quality improvement (Baker et al., 2010). According to a recent review, ten years of test–
based accountability policies has shown little to no effects on student performance (National 
Research Council, 2011).

 Exploring the network of causes for the misuse of standardized test data is beyond 
the scope of this paper, but there are two substantial causes worth noting that are deeply 
related to the tests themselves. The first is simply that our ambitions to capture learning have 
often outpaced our abilities to design effective assessment tasks – learning is a multifaceted 
construct that is difficult to measure. The second reason is that it is also difficult to appropriately 
aggregate, report, and act upon test data (National Research Council, 2011). 

 We have argued that a data–enriched assessment process can potentially measure 
multiple facets of learning, as well as learning processes, more effectively than previous 
assessment approaches. However, our case studies also show that these assessment tasks 
depend on broad and deep learner data that may not always be available. The hype around 
online assessment, and the excitement over measuring novel motivational and other non–
cognitive competencies, may continue to fuel ambitions that outstrip our capabilities. 
Moreover, data–enriched assessment methods can be far more complex and opaque than 
traditional methods, and their results can be difficult to interpret without expert assistance 
(Siemens & Long, 2011). 

 The availability of big data allows assessment methods to continually measure and 
support a broader range of learning outcomes while simultaneously providing feedback 
throughout the learning process. This is creating more of a need to provide thoughtful and 
actionable explanations of assessment results for all of the stakeholders involved, including 
teachers and learners. 

AUTHOR’S NOTE
This work is a collaborative work by the researchers in the Stanford University Lytics Lab 
(http://lytics.stanford.edu). Each listed author is an equal contributor to the work.
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